skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiao, Zhicheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2026
  2. Zaza, Gianluca; Gallo, Crescenzio (Ed.)
    (1) Background: With technological advancements, the integration of wireless sensing and artificial intelligence (AI) has significant potential for real-time monitoring and intervention. Wireless sensing devices have been applied to various medical areas for early diagnosis, monitoring, and treatment response. This review focuses on the latest advancements in wireless, AI-incorporated methods applied to clinical medicine. (2) Methods: We conducted a comprehensive search in PubMed, IEEEXplore, Embase, and Scopus for articles that describe AI-incorporated wireless sensing devices for clinical applications. We analyzed the strengths and limitations within their respective medical domains, highlighting the value of wireless sensing in precision medicine, and synthesized the literature to provide areas for future work. (3) Results: We identified 10,691 articles and selected 34 that met our inclusion criteria, focusing on real-world validation of wireless sensing. The findings indicate that these technologies demonstrate significant potential in improving diagnosis, treatment monitoring, and disease prevention. Notably, the use of acoustic signals, channel state information, and radar emerged as leading techniques, showing promising results in detecting physiological changes without invasive procedures. (4) Conclusions: This review highlights the role of wireless sensing in clinical care and suggests a growing trend towards integrating these technologies into routine healthcare, particularly patient monitoring and diagnostic support. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026